UGC NET, GATE, CSIR NET,IIT-JAM, IBPS, CSAT/IAS, SLET, CTET,TIFR, NIMCET, JEST , JNU , ISM etc .

Toll Free: 1800-2000-092
Mobile: 9001297111, $9829619614,9001894073,9829567114$
Website: www.vpmdasses.com
FREE Online St udent Portal: examprep.vpmdasses.com
E-Mail: vpmclasses@yahoo.com /info@vpmclasses.com
Page 1

UGC NET, GATE, CSIR NET,IIT-JAM, IBPS, CSAT/IAS, SLET, CTET,TIFR, NIMCET, JEST , JNU , ISM etc .

PART A

1. Two basis of R^{3} are $E=\left\{e_{1}, e_{2}, e_{3}\right\}=\{(1,0,0),(0,1,0),(0,0,1)\}$ and $S=\left\{u_{1}, u_{2}, u_{3}\right\}=\{(1,0,1),(2,1,2),(1,2,2)\}$ then the change -of-basis matrix P from E to S is $\left[\begin{array}{lll}1 & 2 & 1 \\ 0 & 1 & 2 \\ 1 & 2 & 2\end{array}\right]$.
2. The triangular form of matrix $A=\left(\begin{array}{lll}1 & -3 & 3 \\ 0 & -1 & 2 \\ 0 & -3 & 4\end{array}\right)$ is $\left(\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right)$
3. A function f twice differentiable and satisfying the inequalies fif $x)|<A|$,$f " (x) \mid<B$, in the range $x>$ a where A and B are constants then $|f(x)|<2 \sqrt{A B}$.
4. The invertible matrix of matrix $\angle A=\left(\begin{array}{ccc}1 & -2 & 0 \\ 1 & -1 & 2 \\ 0 & 1\end{array}\right)$ is $\left(\begin{array}{ccc}1 & -1 & 0 \\ 0 & -1 & 2 \\ 0 & 0 & 1\end{array}\right)$ such that $P^{-1} A P$ is triangular.
5. If $\mathrm{A}=\left(\begin{array}{rrr}1 & 1 & 2 \\ -1 & 2 & 1 \\ 0 & 0 & 3\end{array}\right)$ and matrix $\mathrm{P}=\left[\begin{array}{ccc}1 & 1 & 1 \\ a_{1}^{1} & 1 & 0 \\ 2 & -1 & 1\end{array}\right]$, then $\mathrm{P}^{-1} \mathrm{AP}=\left(\begin{array}{lll}1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3\end{array}\right)$
6. The trianguar form or matrix $\mathrm{A}=\left(\begin{array}{rrr}1 & 1 & 1 \\ -1 & -1 & -1 \\ 1 & 1 & 0\end{array}\right)$ is $\left(\begin{array}{lll}0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0\end{array}\right)$.
7. The sequence $\left\{\frac{n+1}{n}\right\}$ is Unbounded.
8. A function $f: R \rightarrow R$ is defined as follows:
$f(x)=2 x^{2}+3 x+4$, if $x \in(-\infty, 1)$ and $f(x)=k x+9-k$, if $x \in[1, \infty]$
If this function is differentiable on the whole real line, then the value of k must be 7 .

UGC NET, GATE, CSIR NET,IIT-JAM, IBPS, CSAT/IAS, SLET, CTET,TIFR, NIMCET, JEST , JNU , ISM etc.
9. Function $\left\{\begin{array}{cl}1, & 0 \leq x \leq \frac{3 \pi}{4} \\ 2 \sin \frac{2}{9} x & \frac{3 \pi}{4}<x<\pi\end{array}\right.$ is continuous on $(0, \pi)$.
10. Two bas is of R^{2} are $S=\left\{u_{1}, u_{2}\right\}=\{(1,2),(3,5)\}$ and $S^{\prime}=\left\{v_{1}, v_{2}\right\}=\{(1,-1),(1,-2)\}$, then the change of bas is matrix P from S to the "new" bas is S ' is \qquad

PART B

11. E is a non meas urable subset of $[0,1]$. Let $P=E^{\circ} \cup\left\{\frac{1}{n}: n, n\right\}$ and:
 measurable but not Q.
12. If $a \equiv b(\bmod n)$. then g.c.d $(a, n)=\operatorname{gcd}(b, n)$.
13. The series $\sum\left(\frac{1}{k}+\frac{1}{2^{k}}\right)$ is conveagentiv

15 . The antional canonical form of matrix $A=\left(\begin{array}{cccc}1 & 1 & 1 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & -1 & 1 & 0\end{array}\right)$. is

16. The two basis for $R^{2}, B=\{(1,-1),(0,6)\}$ and $C=\{(2,1),(-1,4)\}$ then the transition matrix from C to B is $\left[\begin{array}{cc}2 & 1 / 2 \\ -1 & 1 / 2\end{array}\right]$.

UGC NET, GATE, CSIR NET,IIT-JAM, IBPS, CSAT/IAS, SLET, CTET,TIFR, NIMCET, JEST , JNU , ISM etc.
17. The standard bas is for $p_{3}, B=\left\{1, x, x^{2}\right\}$ and the bas is $C=\left\{p_{1}, p_{2}, p_{3}\right\}$ where $p_{1}=2$, $p_{2}=-4 x, p_{3}=5 x^{2}-1$, then the transition matrix from C to B is $\left[\begin{array}{ccc}2 & 0 & 0 \\ 0 & -4 & 0 \\ -1 & 0 & 5\end{array}\right]$.
18. Let T be the linear operative on R^{2} defined by $T(x, y)=(4 x-2 y, 2 x+y)$. then the matrix of T in the bas is

$$
\left\{f_{1}=(1,1), f_{2}=(-1,0)\right\} \text { is }\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)
$$

19. The null space of the matrix $A=\left[\begin{array}{cc}2 & 0 \\ -4 & 10\end{array}\right]$ is $\{0\}$.
20. The diagonal form of Matrix $A=\left[\begin{array}{rrr}4 & 0 & 1 \\ -1 & -6 & -2 \\ 5 & 0 & 0\end{array}\right]$ is $[-1,6,5]$.

PART C

21. If V be the vector space of polynomials t overfi of degree ≤ 3, and $D: v \rightarrow v$ be the differential operator defined by $\mathrm{D}\left(\mathrm{p}(\mathrm{t})=\frac{\mathrm{s}}{\mathrm{dt}}(\mathrm{p}(\mathrm{t}))\right.$. is $\left[\begin{array}{llll}0 & 1 & 0 & 0 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 3 \\ 0 & 0 & 0 & 0\end{array}\right]$
22. The transition matrix P from the bas is $\left\{e_{j}\right\}$ to the basis $\left\{f_{j}\right\}$ and the transitions matrix q from the basis $\left\{f_{j}\right\}$ to .10 e basis $\left\{e_{i}\right\}$ when $\left\{e_{1}=(1,0), e_{2}=(0,1)\right\}$ be a basis of R^{2} and $\left\{f_{1}=\binom{1}{},, f_{2}=(-1,0)\right\}$ are $p=\left(\begin{array}{rr}1 & 1 \\ -1 & 1\end{array}\right) ; q=\left(\begin{array}{rr}0 & -1 \\ 1 & 0\end{array}\right)$.

UGC NET, GATE, CSIR NET, IIT-JAM, IBPS, CSAT/IAS, SLET, CTET,TIFR, NIMCET, JEST , JNU , ISM etc .
23. A matrix A over R has $(x-7)^{5}$ and $(x-7)^{2}$ as its characteristic and minimal polynomial over R respectively. A possible Jordan canonical form is given by)

24. If G is a group and $a, x \in G$, then $O(a)=O\left(x^{-1} a x\right)$.
25. The group ($R^{*} \times R, O$), where $R^{*}=R-\{0\}$ and $(a, b\}(c, d)=(a c, b c+d)$, then the identity element and the inverse of (a, b) are $(1,0)$ and
$\left(a^{-1},-b a^{-1}\right)$, respectively.
26. If G is a group of all 2×2 matrices $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)(a b-b c) \neq 0$ and a, b, c, d are integers modulo 3, relative to matrix multiplication, then the number of elements in G is 81 .
27. $\lim _{x \rightarrow 0}(\operatorname{cosec} x)^{1 / \log x}$ equals to 1/e.
28. Let $\mathrm{f}: \mathrm{G} \rightarrow \mathrm{H}$ be aroup homenorism from a group G into a group H with kernel K. If the order of G, 1 : and K are 75,45 and 15 respectively, then the order of the image $f(G) \neq s, 5$
29. In the set Q be rational numbers define \otimes a follows for $\alpha, \beta, \in \mathrm{Q}, \alpha \otimes \beta=\frac{\alpha \beta}{3}$

If $Q=Q^{-1}, Q^{*}$ respectively denote the sets of positive or negative and non-zero rationds, then the pair $\left(Q^{*}, \otimes\right)$ is an abelian group.
30. If $S=Z$, the set of all integers; $a^{*} b=a+b^{2}$, then * is binary operation on the given set S .

UGC NET, GATE, CSIR NET,IIT-JAM, IBPS, CSAT/IAS, SLET, CTET,TIFR, NIMCET, JEST , JNU , ISM etc.

PART D

31. The equation whose roots are of opposite sign of the equation $x^{3}-6 x^{2}+11 x-6=$ 0 is $x^{3}+6 x^{2}+11 x+6=0$
32. The value of $\lim _{x \rightarrow 0} \frac{2^{x}-1}{(1+x)^{1 / 2}-1}$ is $\log \sqrt{2}$.
33. Sequence $\left\{a_{n}\right\}, a_{1}>0 a_{n+1}=a_{n}+\frac{1}{a_{n}} \forall n$ diverges to ∞.
34. $\operatorname{Lim}_{x \rightarrow a} \sin \frac{1}{x-a}=0$
35. $f(x), g(x)$ are differential on (a, b) and are continueusom $a, b]$ and $f(a)=-f(b)=0$ then a point $c k(a, b)$ such hat

$$
f^{\prime}(c)+f(c) g^{\prime}(c)=0
$$

36. There exists a non-abelian group each of whose subgroup is nomal.
37. If G is a group of order 10 hen it must haye a subgroup of order 5 .
38. The zero of two multiplicity of $a x^{3}+3 b x^{2}+3 c x+d$ is $\frac{b c}{2(a c-b)^{2}}$.
39. There is no element in the ring Z_{p} which has is own inverse.
40. Let Abe a real symm etric matrixand $f(x)$ a polynomial with real coefficient. Then $f(A)$ is alsoreal symmetric.

Toll Free: 1800-2000-092
Mobile: $9001297111,9829619614,9001894073,9829567114$
Website: www.vpmdasses.com
FREE Online St udent Portal: examprep.vpmdasses.com
E-Mail: vpmclasses@yahoo.com /info@vpmclasses.com

UGC NET, GATE, CSIR NET,IIT-JAM, IBPS, CSAT/IAS, SLET, CTET,TIFR, NIMCET, JEST , JNU , ISM etc .

ANSW ER KEY

Question	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Answer	T	F	T	T	T	T	F	T	T	T	T	T	F	T	T
Question	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30
Answer	F	F	F	T	T	T	F	T	T	T	F	T	T	T	T
Question	31	32	33	34	35	36	37	38	39	40					
Answer	T	F	T	F	T	T	T	F	F	T					

HINTS AND SOLUTION

1. TRUE

Write $v=(1,3,5)$ as a linear combination of u_{1}, u_{2}, u_{3} or equivafent, find $[v]_{S}$. One way to do this is to directly solve the vector equation $v=x u=y u_{2}+z u_{3}$, that is,

$$
\left[\begin{array}{l}
1 \\
3 \\
5
\end{array}\right]=x\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right]+y\left[\begin{array}{l}
2 \\
1 \\
2
\end{array}\right]+z\left[\begin{array}{l}
1 \\
2 \\
2
\end{array}\right]
$$

or

$$
\begin{aligned}
& x+2 y+z=1 \\
& y+2 z=3 \\
& x+2 y+2 z=5
\end{aligned}
$$

Hence the matrix P from Eto S is
given by

$$
\left[\begin{array}{lll}
1 & 2 & 1 \\
0 & 1 & 2 \\
1 & 2 & 2
\end{array}\right]
$$

2. FALSE

The characteristic polynomial of Ais

UGC NET, GATE, CSIR NET,IIT-JAM, IBPS, CSAT/IAS, SLET, CTET,TIFR, NIMCET, JEST , JNU , ISM etc .

$$
\left|\begin{array}{ccc}
\lambda-1 & 3 & -3 \\
0 & \lambda+1 & -2 \\
0 & 3 & \lambda-4
\end{array}\right|=(\lambda-1)^{2}(\lambda-2)
$$

Hence the eigenvalues of A are $1,1,2$. Since the first column of A is already of the required form (with the eigenvalue 1 in the leading place), we process directly to triangularize the subm atrix

$$
B=\left(\begin{array}{ll}
-1 & 2 \\
-3 & 4
\end{array}\right)
$$

The eigenvalues of B are 1,2,. To find an eigenvector of B corresponding to the eigenvalue 1, we solve the system of equations

$$
(B-I) X=0
$$

i.e. $\quad\left(\begin{array}{ll}-2 & 2 \\ -3 & 3\end{array}\right)\binom{x_{1}}{x_{2}}=0$
which yields $x_{1}=x_{2}$. Hence is an eigenyector of B corresponding to eigenvalue

1. So let

Thep

$$
U=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 \\
0 & & 0 \\
0 & 1 & 1
\end{array}\right)
$$

4

$$
\mathrm{U}^{-1}=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & -1 & 1
\end{array}\right)
$$

and

$$
U^{-1} \mathrm{~A} U=\left(\begin{array}{ccc}
1 & -6 & 3 \\
0 & 1 & 2 \\
0 & 0 & 2
\end{array}\right)
$$

3. TRUE

Let $\mathrm{x}>\mathrm{a}$, and h a positive number; then

UGC NET, GATE, CSIR NET,IIT-JAM, IBPS, CSAT/IAS, SLET, CTET,TIFR, NIMCET, JEST , JNU , ISM etc .

$$
\begin{array}{ll}
& f(x+h)=f(x)+h f^{\prime}(x)+\frac{h^{2}}{2!} f^{n}(x+\theta h) \\
\text { or } & h f^{\prime}(x)=f(x+h)-f(x)-\frac{h^{2}}{2!} f^{n}(x+\theta h) . \\
\therefore \quad & |h f(x)|=\left|f(x+h)-f(x)-\frac{h^{2}}{2!} f^{n}(x+\theta h)\right| . \\
& \leq|f(x+h)|+|-f(x)|+\frac{h^{2}}{2!}\left|-f^{n}(x+\theta h)\right|
\end{array}
$$

$$
<A+A+\frac{1}{2} h^{2} B \quad \text { [using the gives relations] }
$$

$$
\text { or } \quad\left|f^{\prime}(x)\right|<\frac{2 A}{h}+\frac{B h}{2}=\phi(h) \text {, say. }
$$

Now | $f^{\prime}(x) \mid$ is independent of h and als oss than ${ }^{\text {o }}(h)$ for all values of h. Hence $\left|f^{\prime}(x)\right|$ must be less than least value of $\phi(1)$. For maxima or minima of $\phi(h)$, we have

$$
0=\phi^{\prime}(h)=\frac{2 A}{h} \frac{\beta h}{2} \text { or } h= \pm 2 \sqrt{\left(\frac{A}{B}\right)}
$$

and $\phi^{\prime \prime}(h)=\frac{4 A}{h^{3}} \geqslant 0$ when $h=2 \sqrt{\left(\frac{A}{B}\right)}$.
Hence the least value of $\phi(h)$

$$
2 A \cdot \frac{1}{2} \sqrt{\left(\frac{B}{A}\right)}+\frac{B}{2} \cdot 2 \sqrt{\left(\frac{A}{B}\right)}=2 \sqrt{(A B)} .
$$

Thus $\left|f^{\prime}(x)\right|<2 \sqrt{(A B)}$.

UGC NET, GATE, CSIR NET,IIT-JAM, IBPS, CSAT/IAS, SLET, CTET,TIFR, NIMCET, JEST , JNU , ISM etc .

4. TRUE

Given matrix $A=\left(\begin{array}{ccc}1 & -2 & 0 \\ 1 & -1 & 2 \\ 0 & 1 & 1\end{array}\right)$
The characteristics equation of matrix A is

$$
\begin{aligned}
& |A-\lambda| \mid=0 \\
& \left|\begin{array}{ccc}
1-\lambda & -2 & 0 \\
1 & -1-\lambda & 2 \\
0 & 1 & 1-\lambda
\end{array}\right|=0 \\
& (\lambda-1)^{2}(\lambda+1)=0
\end{aligned}
$$

The eigenvalues of A are $1,1,-1$. It is easils seen that

$$
\left.\mathrm{X}=\left(\begin{array}{c}
2 \\
0 \\
-1
\end{array}\right) \text { is a solution of } \angle \mathrm{A}-\mathrm{I}\right) \mathrm{X}=0
$$

hence $\left(\begin{array}{c}2 \\ 0 \\ -1\end{array}\right)$ is an eigenvector of Acoresponding to eigenvalue 1.
Let us take

Since($\left(\begin{array}{l}2 \\ 0 \\ -1\end{array}\right),\left(\begin{array}{l}0 \\ 1 \\ 0\end{array}\right),\left(\begin{array}{l}0 \\ 0 \\ 1\end{array}\right)$ are linearly independent, U is invertible.
By using elem entary column operations, it is easily seen that

UGC NET, GATE, CSIR NET,IIT-JAM, IBPS, CSAT/IAS, SLET, CTET,TIFR, NIMCET, JEST , JNU , ISM etc .

$$
U^{-1}=\left(\begin{array}{ccc}
1 / 2 & 0 & 0 \\
0 & 1 & 0 \\
1 / 2 & 0 & 1
\end{array}\right)
$$

Hence $U^{-1} A U=\left(\begin{array}{ccc}1 & -1 & 0 \\ 0 & -1 & 2 \\ 0 & 0 & 1\end{array}\right)$
which is the required triangular form.

5. TRUE

The characteristic polynomial of Ais

$$
\begin{aligned}
f(\lambda) & =-\left|\begin{array}{ccc}
1-\lambda & 1 & 2 \\
-1 & 2-\lambda & 1 \\
0 & 1 & 3-\lambda
\end{array}\right| \\
& =\lambda^{3}-6 \lambda^{2}+11 \lambda-6=(\lambda-1)(\lambda-2)(\lambda-3) .
\end{aligned}
$$

Therefore, 1, 2, 3, are the elgenvalues of A. If X_{1}, X_{2}, X_{3} are eigenvectors corresponding to $1,2,3$ respectively. Ther $P=\left(X_{1}^{\prime}, X_{2}^{\prime}, X_{3}^{\prime}\right)$ is the required matrix. Now $X=\left(\begin{array}{l}a \\ b \\ c\end{array}\right)$ must satisfy

$$
\left(\begin{array}{lll}
1 & 1 & 2 \\
-1 & 2 & 3 \\
0 & 1 & 3
\end{array}\right)\binom{a}{b}=1\left(\begin{array}{l}
a \\
b \\
c
\end{array}\right)
$$

Therefore $a+b+2 c=a,-a+2 b+c=b$ and $b+3 c=c$.

UGC NET, GATE, CSIR NET,IIT-JAM, IBPS, CSAT/IAS, SLET, CTET,TIFR, NIMCET, JEST , JNU , ISM etc .
These equations give $\mathrm{b}=-2 \mathrm{c}$, and $\mathrm{a}=-\mathrm{c}$. Thus $\alpha\left(\begin{array}{r}1 \\ 2 \\ -1\end{array}\right)$ for any nonzero number $\alpha[$ Here $\alpha=-\mathrm{c}]$ is an eigenvector corresponding to 1 . Choosing a arbitrarily, say 1 , we have $X_{1}=\left(\begin{array}{c}1 \\ 2 \\ -1\end{array}\right)$. Similarly,

$$
x_{2}=\left(\begin{array}{c}
1 \\
-1 \\
1
\end{array}\right), x_{3}=\left(\begin{array}{l}
1 \\
0 \\
1
\end{array}\right)
$$

Therefore $P=\left(\begin{array}{rrr}1 & 1 & 1 \\ 2 & -1 & 0 \\ -1 & 1 & 1\end{array}\right)$.

$$
\text { then } \mathrm{P}^{-1}=\left(\begin{array}{rrr}
-1 & 0 & 1 \\
-2 & 2 & 2 \\
1 & -2 & -3
\end{array}\right) \text { and } P^{-1} \quad \mathrm{AP}=\left(\begin{array}{lll}
0 & 0 \\
2 & 0 \\
0 & 0 & 3
\end{array}\right)
$$

6. TRUE

$A^{2}=\left(\begin{array}{rrr}1 & 1 & 0 \\ -1 & -1 & 0 \\ 0 & 0 & 0\end{array}\right)$ and $A^{3}=0$. Hence A is nilpotent, with minimum polynomial of A, $q(t)=t^{3}$. Hence the riangular form of A is the Jordan Canonical form of A which is $\left(\begin{array}{lll}0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0\end{array}\right)$.
7.

FALSE

$$
X_{n}=\frac{n+1}{n}=1+\frac{1}{n}
$$

$\forall n \in N, 1 \leq X_{n}$ (bounded below)

UGC NET, GATE, CSIR NET, IIT-JAM, IBPS, CSAT/IAS, SLET, CTET, TIFR, NIMCET, JEST , JNU , ISM etc .
$\forall \mathrm{n} \in \mathrm{N}, 2 \geq \mathrm{X}_{\mathrm{n}}$ (bounded above)
$\therefore\left\{\frac{n+1}{n}\right\}$ is bounded sequence.
8. TRUE

Here, given functions are

$$
f(x)=2 x^{2}+3 x+4, \text { if } x \in(-\infty, 1)
$$

and $\quad f(x)=k x+9-k$, if $x \in[1, \infty)$
$\therefore \quad L f^{\prime}(x)=R f(x)$
Now, $\quad L f(x)=2 x^{2}+3 x+4$
$\therefore \quad L f^{\prime}(x)=4 x+3$ at $x=1$
$L f^{\prime}(1)=4 \times 1+3=7$
Now, $\quad \operatorname{Rf}(x)=k x+9-k$
$\therefore \quad R f^{\prime}(x)=k \Rightarrow R f^{\prime}(1)=k$
$\because \quad L f^{\prime}(1)=R(1)$
$\Rightarrow \quad 7=\mathrm{k}$
9. TRUE

$$
\begin{aligned}
& 4(x)=1, \quad{ }_{0}<x \leq \frac{3 \pi}{4} \\
& \text { 2sim }\left(\frac{2 x}{9}\right), \frac{3 \pi}{4}<x<\pi
\end{aligned}
$$

We have,

$$
\begin{aligned}
& \lim _{x \rightarrow \frac{3 \pi^{-}}{4}} f(x)=1 \\
& \lim _{x \rightarrow \frac{\pi^{+}}{4}} f(x)=\lim _{x \rightarrow \frac{3 \pi}{4}} 2 \sin \left(\frac{2 x}{9}\right)=1
\end{aligned}
$$

Toll Free: 1800-2000-092
Mobile: $9001297111,9829619614,9001894073,9829567114$
Website: www.vpmdasses.com
FREE Online St udent Portal: examprep.vpmdasses.com
E-Mail: vpmclasses@yahoo.com /info@vpmclasses.com

UGC NET, GATE, CSIR NET,IIT-JAM, IBPS, CSAT/IAS, SLET, CTET,TIFR, NIMCET, JEST , JNU , ISM etc .
So, $f(x)$ is continuous at $x=\frac{3 \pi}{4}$.
$\Rightarrow f(x)$ is continuous at all other points.

10. TRUE

We have

$$
\begin{array}{lll}
{\left[\begin{array}{r}
1 \\
-1
\end{array}\right]=x\left[\begin{array}{l}
1 \\
2
\end{array}\right]+y\left[\begin{array}{l}
3 \\
5
\end{array}\right]} & \text { or } & \begin{aligned}
& x+3 y=1 \\
& 2 x+5 y=-1
\end{aligned} \\
{\left[\begin{array}{r}
1 \\
-2
\end{array}\right]=x\left[\begin{array}{l}
1 \\
2
\end{array}\right]+y\left[\begin{array}{l}
3 \\
5
\end{array}\right]} & \text { or } & \begin{aligned}
x+3 y & =1 \\
2 x+5 y & =-2
\end{aligned}
\end{array}
$$

Thus

$$
\begin{aligned}
& v_{1}=-8 u_{1}+3 u_{2} \\
& v_{2}=-11 u_{1}+4 u_{2}
\end{aligned} \quad \text { and hence } P=\left[\begin{array}{c}
8 \\
3
\end{array}\right.
$$

Note that the coordinates of v_{1} and v_{2} are the columns, not rows of the chanœ-ofbas is matrix P.

11. TRUE

E is a non-measurable subsel $0[[0,1]$

Let

$$
P=F^{O} \cup\left\{\frac{1}{n}: n \in N\right.
$$

and $/ P=$,

Here E^{0} is the interior of E,
i.e. $E^{0}<E$
and $\overline{\mathrm{E}}$ is the closure of E , i.e. $\overline{\mathrm{E}} \approx \mathrm{E}$
Hence, P is meas urable but not Q .

UGC NET, GATE, CSIR NET,IIT-JAM, IBPS, CSA T/IAS, SLET, CTET,TIFR, NIMCET, JEST , JNU , ISM etc.

12. TRUE

Let d=g.c.d (a, n)
$\Rightarrow \mathrm{d} /|\mathrm{a}, \mathrm{d}| \mathrm{n}$, but $\mathrm{n} \mid \mathrm{a}-\mathrm{b}$
$\Rightarrow \mathrm{d}|\mathrm{a}-\mathrm{b}, \mathrm{d}| \mathrm{a}$
$\Rightarrow \mathrm{d} \mid \mathrm{a}-(\mathrm{a}-\mathrm{b})=\mathrm{b}$
$\Rightarrow \mathrm{d}|\mathrm{b}, \mathrm{d}| \mathrm{n}$
Let $\mathrm{c}|\mathrm{b}, \mathrm{c}| \mathrm{n} \Rightarrow \mathrm{c}|\mathrm{b}, \mathrm{c}| \mathrm{a}-\mathrm{a}$ as $\mathrm{n} \mid \mathrm{a}-\mathrm{b}$

$$
\begin{aligned}
& \Rightarrow \mathrm{c} \mid \mathrm{a}-\mathrm{b}+\mathrm{b}=\mathrm{a} \\
& \Rightarrow \mathrm{c}|\mathrm{a}, \mathrm{c}| \mathrm{n} \\
& \Rightarrow \mathrm{c} \mid \mathrm{d} \text { as } \mathrm{d}=\mathrm{g} \cdot \mathrm{c} \cdot \mathrm{~d}(\mathrm{a}, \mathrm{n}) \\
& \Rightarrow \operatorname{g.c.d}(\mathrm{b}, \mathrm{n})=\mathrm{d} .
\end{aligned}
$$

13. FALSE

By a well known theorem we know that if Σa_{n} converges and if Σb_{n} diverges then $\Sigma\left(a_{n}+b_{n}\right)$ diverges

Here the sevies \sum_{k}^{1} diverges and $\sum \frac{1}{2^{k}}$ converges then the series $\sum\left(\frac{1}{k}+\frac{1}{2^{k}}\right)$ is divergent

14. TRUE

The characteristic polynomial of A is $(\lambda I-A)=\lambda^{4}$. Hence $A^{4}=0$, i.e. A is nilpotent. Moreover, bycomputation $A^{3} \neq 0$ so that the minimum polynomial of A is
$q(t)=t^{4}$. Hence the Jordan canonical form of Ais given by

UGC NET, GATE, CSIR NET,IIT-JAM, IBPS, CSAT/IAS, SLET, CTET,TIFR, NIMCET, JEST , JNU , ISM etc .

$$
\left(\begin{array}{llll}
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0
\end{array}\right)
$$

15. TRUE

The characteristic polynomial of A is $(x-1) x\left(x^{2}+x+1\right)$ and since the factors are non-square it is also the minimum polynomial of A Hence the rational canonical form is $C(x) \oplus C(x-1) \oplus C\left(x^{2}+x+1\right)$ where $C(q(x))$ is the companion matrix of $q(x)$. In blockmatrix notation this can be expressed as

16. FALSE

Write the vectors firm C as linear combination of the vectors from B. Here are those linear combinations

$$
\begin{aligned}
& 4(2)=2(1,-1)+\frac{y_{1}}{2}(0,6) \\
& (-1,4)=-(1,-1)+\frac{1}{2}(0,6)
\end{aligned}
$$

The tuog coordinate matrices are then,

$$
[(2,1)]_{B}=\left[\begin{array}{c}
2 \\
1 / 2
\end{array}\right]
$$

Toll Free: 1800-2000-092
Mobile: $9001297111,9829619614,9001894073,9829567114$
Website: www.vpmdasses.com
FREE Online St udent Portal: examprep.vpmdasses.com

UGC NET, GATE, CSIR NET,IIT-JAM, IBPS, CSAT/IAS, SLET, CTET,TIFR, NIMCET, JEST , JNU , ISM etc .

$$
[(-1,4)]_{\mathrm{B}}=\left[\begin{array}{c}
-1 \\
1 / 2
\end{array}\right]
$$

and the transition matrix is given $P=\left[\begin{array}{cc}2 & -1 \\ 1 / 2 & 1 / 2\end{array}\right]$

17. FALSE

Since B is the standard bas is vectors writing down the transitionmatrix will be

$$
P=\left[\begin{array}{rrr}
2 & 0 & -1 \\
0 & -4 & 0 \\
0 & 0 & 5
\end{array}\right]
$$

Each column of P will be the coefficients of the vector from C. Since those will also be the coordinate of each of those vectors relative to the standard basis vectors. The first row will be the constant tems froh, each basiswectors, the second row will be the coefficient of x from each bas is vectoif and thild column will be the coefficient of x^{2} from each basis vector.
18. FALSE

We have $T\left(f_{1}\right)=T(1,1)=(2,3)$

$$
=3(1,1)+(-1,0)
$$

$$
\geqslant 3 f_{1}=f_{2}
$$

$$
\mathrm{T}\left(\mathrm{f}_{2}\right)=\mathrm{T}(-1,0)=(-4,-2)
$$

$$
=2(1,1)+2(-1,0)
$$

$$
=-2 f_{1}+2 f_{2}
$$

Hence $[T]_{\mathrm{f}}=\left[\begin{array}{rr}3 & -2 \\ 1 & 2\end{array}\right]$

Toll Free: 1800-2000-092
Mobile: $9001297111,9829619614,9001894073,9829567114$
Website: www.vpmdasses.com
FREE Online St udent Portal: examprep.vpmdasses.com

UGC NET, GATE, CSIR NET,IIT-JAM, IBPS, CSAT/IAS, SLET, CTET,TIFR, NIMCET, JEST , JNU , ISM etc .

19. TRUE

Since $A=\left[\begin{array}{cc}2 & 0 \\ -4 & 10\end{array}\right]$
to find the null space of A we will need to solve the following system of equations

$$
\begin{aligned}
& {\left[\begin{array}{rr}
2 & 0 \\
-4 & 10
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]} \\
& \Rightarrow \quad 2 x_{1}=0, \quad-4 x_{1}+10 x_{2}=0
\end{aligned}
$$

we have given this in both matrix form and equation fohn. In equatiol form it is easy to see that the only solution is $x_{1}=x_{2}=0$. In tery of vectors fo:m R^{2}. The solution consists of the single vector $\{0\}$ and hence the null space 0 A is $\{0\}$.

20. TRUE

The characteristic equation of matrix A is

$$
\begin{aligned}
& |A-\lambda I|=0 \Rightarrow\left|\begin{array}{ccc}
4-\lambda & 0 & 1 \\
-1 & -6-\lambda & 2 \\
5 & 0 & 0 \lambda \lambda
\end{array}\right|=0 \\
& \Rightarrow(4-\lambda)(6+\lambda) \lambda]+1(6+\lambda) 5=0 \\
& \Rightarrow(6+\lambda)[\lambda(4-\lambda)+5]=0 \\
& \Rightarrow(6+\lambda)\left(4 \lambda-\lambda^{2}+5\right)=0 \\
& (6+\lambda)(1+\lambda)(5-\lambda)=0 \\
& 1 \geqslant 2=-6,-1,5
\end{aligned}
$$

and we know that if we change amatrix in a diagonal form then the diagonal entries are equal to the eigen values of A Hence the diagonal form of A is $(-1,-6,5)$.

UGC NET, GATE, CSIR NET,IIT-JAM, IBPS, CSAT/IAS, SLET, CTET,TIFR, NIMCET, JEST , JNU , ISM etc .

21. TRUE

$D(1)=0=0+0 t+0 t^{2}+0 t^{3}$
$D(t)=1=1+0 t+0 t^{2}+0 t^{3}$
$D\left(t^{2}\right)=2 t=0+2 t+0 t^{2}+0 t^{3}$
$D\left(t^{3}\right)=3 t^{2}=0+0 t+3 t^{2}+0 t^{3}$

22. FALSE

$f_{1}=(1,1)=(1,0)=(0,1)=e_{1}+e_{2}$
$f_{2}=(-1,0)=-(1,0)+0 .(0,1)=-e_{1}+e_{2}$
Hence the transition matrix P from the bas $\$\{g\}$ to the bas $\left\{\begin{array}{l}i f\end{array} f_{j}\right\}$ is
$P=\left(\begin{array}{rr}1 & 1 \\ -1 & 0\end{array}\right)$
$e_{1}=(1,0)=0(1,1)-(-1,0)=f_{1}-f_{2}$
$e_{2}=(0,1)=1(1,1)+(-1,0)=f_{1}+f_{2}$
Hence the transition riatrix q from the basis $\left\{f_{j}\right\}$
back to the bass is celis

Observed that p and q are inverse

$$
\mathrm{pq}=\left(\begin{array}{rr}
1 & -1 \\
1 & 0
\end{array}\right)\left(\begin{array}{rr}
0 & 1 \\
-1 & 1
\end{array}\right)=\left(\begin{array}{ll}
1 & 0 \\
1 & 1
\end{array}\right)=\mathrm{I}
$$

or Byobservation : If p and q are change of basis matrix then $p=q^{-1}$ be hold.

UGC NET, GATE, CSIR NET,IIT-JAM, IBPS, CSAT/IAS, SLET, CTET,TIFR, NIMCET, JEST , JNU , ISM etc .

23. TRUE

Since the characteristic polynomial of A is $(x-7)^{5}$ the characteristic 7 should occur 5 times along the leading diagonal of a possible Jordon-Canonical form J of A. Since $(x-7)^{2}$ in the minimal polynomial of A, we must start with a 2×2 Jordin black in J i.e., $\left.\begin{array}{ll}7 & 1 \\ & 7\end{array} \right\rvert\,$ in the first Jordan block in J. The Jordan blocks musto ocerwis non increasing order along the principal diagonal.

24. TRUE

Let $a \in G, x \in G$, then

$$
\begin{aligned}
\left(x^{-1} \mathrm{ax}\right)^{2} & =\left(x^{-1} \mathrm{ax}\right)\left(x^{-1} \mathrm{ax}\right) \\
& =x^{-1}\left(\mathrm{xx}^{-1}\right) \mathrm{ax} \quad \text { [byassociativity] } \\
& =x^{-1} \text { aeax }=x^{-1}(\text { aea } \mathrm{x} \\
& =x^{-1} \mathrm{a}^{2} \mathrm{x}
\end{aligned}
$$

Again let $\left(x^{-1} a x\right)^{n-1}=x^{-1} a^{n-1} x$, where $(n-1) \in N$

$$
\begin{aligned}
& \Rightarrow \quad\left(x^{-1} a x\right)^{n-1}\left(x^{1} a x\right)=\left(x^{-1} a^{n-1} x\right)\left(x^{-1} a x\right) \\
& \left.\Rightarrow \quad \quad \quad x^{-1} a x\right)^{n}=x^{+1} a^{n-1}\left(x x^{-1}\right) a x=x^{-1} a^{n-1}(e a x)
\end{aligned}
$$

Therefore by induction method,

$$
\left(x^{-1} a y\right)^{n}=x^{-1} a^{n} x, \quad \forall n \in N
$$

Now fee $O(a)=n$ and $O\left(x^{-1} a x\right)=m$,
then

$$
\begin{align*}
& \left(x^{-1} a x\right)^{n}=x^{-1} a^{n} x=x^{-1} e x=e \\
\Rightarrow \quad & O\left(x^{-1} a x\right) \leq n \quad \Rightarrow m \leq n \tag{1}
\end{align*}
$$

Toll Free: 1800-2000-092
Mobile: $9001297111,9829619614,9001894073,9829567114$
Website: www.vpmdasses.com
FREE Online St udent Portal: examprep.vpmdasses.com
E-Mail: vpmclasses@yahoo.com /info@vpmclasses.com

UGC NET, GATE, CSIR NET,IIT-JAM, IBPS, CSAT/IAS, SLET, CTET,TIFR, NIMCET, JEST , JNU , ISM etc .
Again $O\left(x^{-1} a x\right)=m \Rightarrow\left(x^{-1} a x\right)^{m}=e \Rightarrow x^{-1} a^{m} x=e$

$$
\begin{aligned}
& \Rightarrow \quad x\left(x^{-1} a^{m} x\right) x^{-1}=x e x^{-1}=e \\
& \Rightarrow \quad\left(x x^{-1}\right) a^{m}\left(x x^{-1}\right)=e \\
& \Rightarrow \quad e a^{m} e=e \quad \Rightarrow \quad a^{m}=e
\end{aligned}
$$

$$
\begin{equation*}
\Rightarrow \mathrm{O}(\mathrm{a}) \leq \mathrm{m} \quad \Rightarrow \mathrm{n} \leq \mathrm{m} \tag{2}
\end{equation*}
$$

(1) and (2) $\Rightarrow \quad \mathrm{n}=\mathrm{m}$
$\Rightarrow \quad O(a)=O\left(x^{4} a x\right)$

If $O(a)$ is the infinite, then $O\left(x^{-1} a x\right)$ will also be infinite

25. TRUE

Consider the group ($\left.\mathrm{R}^{*} \times \mathrm{R}, \odot\right)$
where

$$
\begin{equation*}
R^{*}=R-\{0\} \quad \text { and } \tag{i}
\end{equation*}
$$

$(a, b) \odot(c, d)=(a c, b c+d)$
Note the element (a, b) of $\left(R^{*} \times R\right)$
$\Rightarrow a \in R^{*}, b \in R$
To find identity : Lev (c,d) be the identity of $\left(R^{*} \times R\right)$ then
$(\mathrm{a}, \mathrm{b}) \odot(\mathrm{c}, \mathrm{d})=(\mathrm{a}, \mathrm{b})$
$\Rightarrow(a \mathrm{ac}, \mathrm{b}+\mathrm{d})(\mathrm{a}, \mathrm{b})$
$\Rightarrow \quad$ ac $=$ a
and
$b c+d=b$
by Eq. (i) $\mathrm{ac}=\mathrm{a}$
$\Rightarrow \quad \mathrm{ac}-\mathrm{a}=0$
$\Rightarrow \mathrm{a}(\mathrm{c}-1)=0$.

UGC NET, GATE, CSIR NET,IIT-JAM, IBPS, CSAT/IAS, SLET, CTET,TIFR, NIMCET, JEST , JNU , ISM etc .
since $a \in R^{*} \Rightarrow a \neq 0$ so, $c=1$
Now by Eq. (ii) $b c+d=b$

$$
\begin{array}{rr}
\Rightarrow & \mathrm{bc}-\mathrm{b}+\mathrm{d}=0 \\
\Rightarrow & \mathrm{~b}(\mathrm{c}-1)+\mathrm{d}=0 \\
\Rightarrow & \mathrm{~d}=0
\end{array}
$$

$$
(\text { since, } c=1)
$$

Thus identity is $(1,0) \in\left(R^{*}, R\right)$
Now let (c, d) be inverse of (a, b), then $(c, d) \odot(a, b)=$ dentity
$\Rightarrow \quad(\mathrm{c}, \mathrm{d}) \odot(\mathrm{a}, \mathrm{b})=(1,0)$
$\Rightarrow \quad(\mathrm{ac}, \mathrm{bc}+\mathrm{d})=(1,0)($ by definition of $\odot)$
$\Rightarrow \quad \mathrm{ac}=1$
and $\quad b c+d=0$
by Eq. (iii) $a c=1 \Rightarrow c=a^{-1}$
by Eq. (iv) $\quad b c+d=0$

Henee, idenlily elements are $(1,0)$
and inverse of (a, b) is $\left(a^{-1},-b a^{-1}\right)$.

UGC NET, GATE, CSIR NET,IIT-JAM, IBPS, CSAT/IAS, SLET, CTET,TIFR, NIMCET, JEST , JNU , ISM etc .

26. FALSE

Here, it is given that G is group of all 2×2 matrices $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ where $(a d-b c) \neq 0$ and a, b, c, d are integers modulo 3 , So, if $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$, then $a, b, c, d \in\{0,1,2\}=A$ (say).

Since a, b, c, d can take three values there are $3 \times 3 \times 3=81,2 \times 2$ hellees in act with element in A. If $a b=b c=0$, since $a b=0$ in five ways (i.e for five pairs of value of a and $b)$ and $b c=0$ in five ways.

There are $5 \times 5=(25)$ different ways in which ad and bcere simultaneously zero.

If

$$
a d=b c \neq 0
$$

$\mathrm{ad} \neq 0$ means either $\mathrm{ad}=1$ or 2
Now $a d=1$ in two ways and $b c=1$ in two ways
Therefore, both ad and bc are 1 simultaneous in $2 \times 2=(4)$ ways
Similarly $a d=b c=2$ in 4 different ways. Hence, there are eight ways in all in which $a d=b c \neq 0$.
\therefore Total number of matrices in the form of $\mathrm{ad}-\mathrm{bc}=0$ is $25+8=(33)$
\therefore Total number of matises in the form of
27. TRUE

Let $\log p=\lim _{x \rightarrow 0} \frac{\log \operatorname{cosec} x}{\log x} \lim _{x \rightarrow 0} \frac{-\cot x}{1 / x}$

UGC NET, GATE, CSIR NET,IIT-JAM, IBPS, CSAT/IAS, SLET, CTET,TIFR, NIMCET, JEST , JNU , ISM etc .

$$
\begin{aligned}
& =-\lim _{x \rightarrow 0} \frac{x}{\tan x}=-\lim _{x \rightarrow 0} \frac{1}{\sec ^{2} x}=-1 \quad(\text { By L' Hospital's rule) } \\
& \Rightarrow p=e^{-1}=1 / e
\end{aligned}
$$

28. TRUE

Here, It is given that $\mathrm{f}: \mathrm{G} \rightarrow \mathrm{H}$ is group homomomism from a group G -into an group H , with kernel K.
$\therefore \quad$ By given condition that $\mathrm{O}(\mathrm{G})=75$

$$
\mathrm{O}(\mathrm{H})=45, \mathrm{O}(\mathrm{~K})=15
$$

$\therefore \quad$ By first fundam ental theorem
We have

$$
f(G) \cong \frac{G}{K}
$$

$\Rightarrow \quad \mathrm{O}\{\mathrm{f}(\mathrm{G})\}=\mathrm{O}\left(\frac{\mathrm{G}}{\mathrm{K}}\right)$

$$
\Rightarrow \quad \mathrm{O}\{\mathrm{f}(\mathrm{G})\}=\frac{\mathrm{O}(\mathrm{G})}{\mathrm{O}(\mathrm{~K})}=\frac{75}{15} 5
$$

29. TRUE

Here, it is given that Q is the set of rational numbers which is defined as follows
for $\quad a, b, Q$ and $\alpha \otimes \beta=\frac{\alpha \beta}{3}$
To prove ins abelian group, it must satisfy the following properties.
Closure : $\mathrm{Q} \otimes$ is closure in Q^{*}
2. Commutativity : $\alpha \otimes \beta=\frac{\alpha \beta}{3}=\frac{\beta \alpha}{3}=\beta \otimes \alpha$
3. Assodiativity: $(\alpha \otimes \beta) \otimes \gamma=\alpha \otimes(\beta \otimes \gamma) \frac{\alpha \beta \gamma}{9}, \forall \alpha, \beta, \gamma \in Q^{*}$

UGC NET, GATE, CSIR NET,IIT-JAM, IBPS, CSAT/IAS, SLET, CTET,TIFR, NIMCET, JEST , JNU , ISM etc .
4. Identity: $\alpha \oplus 3=\alpha=3 \otimes \alpha, \forall \alpha \in Q^{*}$
$\therefore 3$ is identity elements in Q^{*}.
5. Inverse : $\alpha \otimes \frac{9}{\alpha}=3=\frac{9}{\alpha} \otimes \alpha, \forall \alpha \in \mathrm{Q}^{*}$
$\therefore \frac{9}{\alpha}$ is inverse element
$\therefore(\mathrm{Q}, *, \otimes)$ is an abelian group.
30. TRUE

Since, addition is binary operation on the set N of natural numbers ie, $a+b \in N$ $\forall a, b, \in N$ and subtraction is not a binary operation or $1 . N$. S. Z, the set of all integers, $a * b=a+b^{2}$ satisfy the binary condition

31. TRUE

The given equation is

$$
x^{3}-6 x^{2}+11 x-6=0
$$

replaang x by $(-x)$, the required equationis

$$
(-x)^{3}-6(-x)^{2}+11(-x)-6=0
$$

or, $\quad-x^{3}-6 x^{2}-1 \gg=0$
or,

$$
x^{3}+6 x^{2}+1+2=6=0
$$

32. FALSE

$$
\begin{aligned}
& \lim _{x \rightarrow 0} \frac{2^{x}-1 / 2}{(+x)^{1 / 2}-1} \\
& =\lim _{x \rightarrow 0} \frac{2^{x} \log 2}{\frac{1}{2}(1+x)^{-1 / 2}} \\
& =2 \log 2=\log 4 .
\end{aligned} \quad\left\{\because \lim _{x \rightarrow a} \frac{f(x)}{g(x)}=\lim _{x \rightarrow a} \frac{f^{\prime}(x)}{g^{\prime}(x)}\right\}
$$

UGC NET, GATE, CSIR NET,IIT-JAM, IBPS, CSAT/IAS, SLET, CTET,TIFR, NIMCET, JEST , JNU , ISM etc .

33. TRUE

Here $\mathrm{a}_{\mathrm{n}}+1>\mathrm{a}_{\mathrm{n}}>0 \forall \mathrm{n}$ Let the monotonic an be bounded. Then $\lim \mathrm{a}_{\mathrm{n}}=\mathrm{l}(>\mathrm{a} 1>0)$.
On lettingn $\rightarrow \infty$,

$$
\ell=\ell+\frac{1}{\ell} \text {, i.e. } \frac{1}{\ell}=0 \text {, a contradiction. }
$$

Hence, n is unbounded above and being monotonic it diverges $\mathrm{t}^{\circ} \infty$,

34. FALSE

For any d>0 $\quad \exists \mathrm{n} \in \mathbf{N}$ such that
$-\delta<x_{1}-a=\frac{1}{-2 n \pi-\frac{\pi}{2}}<x_{2}-a=\frac{1}{2 n \pi+\frac{\pi}{2}}<\delta$, and so
$x_{1}, \left.x_{2} \in\{x: 0<|x-a|<\delta\} \Rightarrow \sin \frac{1}{x_{1}-a}-\sin \frac{\mid}{x_{2}-z}| |-1-1 \right\rvert\,=2 \nmid \varepsilon=1$.
Hence, by the general principleforthe existence of limits, $\lim _{x \rightarrow a} \sin \frac{1}{x-a}$ does not exist.
35. TRUE

Here $F(x) \equiv f(x) e^{g(x)}$ satisffes the colditions of Rolle's theorems on [a, b]. So that there exists a poin $\& \in(a, b)$ sulch that $F^{\prime}(c)=0$, i.e.,

$$
\begin{gathered}
f(c)=e^{g(c)}+f(\mathrm{c}) \mathrm{eg}(\mathrm{c})=0 . \\
\therefore \quad \forall \mathrm{f}^{\prime}(\mathrm{c})+\mathrm{f}(\mathrm{c}) \mathrm{g}^{\prime}(\mathrm{c})=0, \text { as } \mathrm{e}^{g(\mathrm{c})} \neq 0 .
\end{gathered}
$$

36. TRUE

Consider the Quaternion group of order 8.

$$
\begin{aligned}
\mathrm{G} & =\{ \pm 1, \pm i, \pm j, \pm k\}, \quad i^{2}=j^{2}=k^{2}=-1 \\
\text { and } \quad i j & =-j i=k, j k=-k j=i, k i=-i k=j
\end{aligned}
$$

UGC NET, GATE, CSIR NET,IIT-JAM, IBPS, CSAT/IAS, SLET, CTET,TIFR, NIMCET, JEST , JNU , ISM etc .
Cleally G is non-abelian. By Lagrange's Theorem, G can have proper subgroups of orders 4 and 2 only. If H is subgroup of G of order 4 ,
then

$$
\mathrm{i}_{\mathrm{G}}(\mathrm{H})=\mathrm{O}(\mathrm{G}) / \mathrm{O}(\mathrm{H})=8 / 4=2 .
$$

Now

$$
\mathrm{i}_{\mathrm{G}}(\mathrm{H})=2 \Rightarrow \mathrm{H} \triangleleft \mathrm{G} .
$$

Thus all subgroups of G of order 4 are nomal.
The only subgroup of G of order 2 is $\{1,-1\}$, which is obviously nomal in
Hence G is a non-abelian group each of whose subgroup is nom al

37. TRUE

By Lagrange's theorem such a subgroup can exist We fisst claim that all elements of G cannot be order 2. Suppose it is so ket a, b k G wo different elements with order 2.

Let $\mathrm{H}=<\mathrm{a}>, \mathrm{k}=<\mathrm{b}>$ be the cyclie subgroups generated by a and b .
then $\mathrm{O}(\mathrm{H})=2, \mathrm{O}(\mathrm{K})=2$
Since all elements of G are of order 2 it must be abelian.
$\therefore \mathrm{HK}=\mathrm{KH} \Rightarrow \mathrm{HK}$ s a s ubgroüp of G .
and as $O(H k)=\frac{O(H)=(\mathrm{K})}{O(* 4)} \frac{2 \times 2}{1}=4$
Note $\mathrm{H} \cap \mathrm{K}$ (e) as $\mathrm{a} \neq \mathrm{b}$]
By Lagrange's theorem $O(H K)$ should divide $O(G)$ i.e., $4 / 10$ which is not true hence ou*assumption is wrong and thus all elements of $\mathrm{G} \Rightarrow \exists$ can not have order 2.

Again since G is finite $O(a) \mid O(G)$ for all $a \in G$ at least one element $a \in G$, such that $O(a)=5$ or 10 .

If $\mathrm{O}(\mathrm{a})=5$, then $\mathrm{H}=<\mathrm{a}>$ is a subgroup of order 5 .

UGC NET, GATE, CSIR NET,IIT-JAM, IBPS, CSAT/IAS, SLET, CTET,TIFR, NIMCET, JEST , JNU , ISM etc .
If $\mathrm{O}(\mathrm{a})=10$, then $\mathrm{H}=<\mathrm{a}^{2}>$ is a subgroup of order 5 .

38. FALSE

Here $F(x)=a x^{3}+3 b x^{2}+3 c x+d$

$$
F^{\prime}(x)=3 a x^{2}+6 b x+3 c
$$

\therefore The zero of $\mathrm{F}(\mathrm{x})$ is of multiplicity 1 .
Therefore the common divisor of $F(x)$ and $F^{\prime}(x)$ is
$2\left(c a-b^{2}\right) x+(d a-b c)$
which has zero of multiplicity 1 . Hence

$$
x=\frac{b c-a d}{2\left(a c-b^{2}\right)}
$$

39. FALSE

Let $\overline{\mathrm{a}} \in \mathrm{Z}_{\mathrm{p}}$ such that $\overline{\mathrm{a}}^{2}=\overline{1}$. Then
$a^{2} \equiv 1(\operatorname{modp})$ i.e. $p \mid\left(a^{2}-1\right)=(a+1)(a-1)$.
$p \mid a+1$ or $p \mid a-1$, ie. $a \equiv 1$ (modp)
or $a \equiv-1(\operatorname{modp})$. He Ace $\overline{\mathrm{a}}=\overline{1}$ or $\overline{\mathrm{a}}=\overline{\mathrm{p}-1}$
40. TRUE

Sincelthas real coefficients
$f\left(A^{t}=f(A)^{t}\right.$. But $A=A^{t}$ so that
$f(A)=\left\langle(A)^{t}\right.$. Hence $f(A)$ is symmetric.

Toll Free: 1800-2000-092
Mobile: $9001297111,9829619614,9001894073,9829567114$
Website: www.vpmdasses.com
FREE Online St udent Portal: examprep.vpmdasses.com
E-Mail: vpmclasses@yahoo.com /info@vpmclasses.com

